Home › Forum › Primes Magic Games site › Orthogonal Latin squares of order 10
Taggato: diagonal Latin Squares, Latin Squares
- Questo topic ha 20 risposte, 2 partecipanti ed è stato aggiornato l'ultima volta 7 anni, 3 mesi fa da Natalia Makarova.
-
AutorePost
-
Gennaio 23, 2016 alle 3:24 pm #644Natalia MakarovaPartecipante
Dear colleagues!
I invite you to the Russian distributed computing project
http://sat.isa.ru/pdsat/index.php
The project looking for:
1 pair of diagonal orthogonal LS;
2. group MOLS of three LS, in which there is incomplete orthogonality.The results you can see on the page
http://sat.isa.ru/pdsat/solutions.phpHere you can see the results found by other scientists (group MOLS of three LS which incomplete orthogonality):
http://www.ams.org/journals/mcom/2016-85-298/S0025-5718-2015-03010-5/S0025-5718-2015-03010-5.pdfA – square
0 8 9 7 5 6 4 2 3 1 9 1 4 6 2 7 3 8 0 5 7 4 2 5 1 3 8 6 9 0 8 6 5 3 9 2 1 0 4 7 6 2 1 8 4 0 9 5 7 3 4 9 3 2 7 5 0 1 6 8 5 3 7 1 0 8 6 9 2 4 3 5 0 9 8 4 2 7 1 6 1 7 6 0 3 9 5 4 8 2 2 0 8 4 6 1 7 3 5 9
B – square
0 7 8 9 1 2 3 4 5 6 9 0 6 1 8 3 2 5 4 7 7 2 0 4 3 9 1 8 6 5 8 5 3 0 2 1 7 6 9 4 6 9 5 3 0 7 4 2 1 8 4 1 7 6 5 0 8 9 3 2 5 4 2 8 9 6 0 3 7 1 3 6 1 7 4 8 5 0 2 9 1 8 4 2 6 5 9 7 0 3 2 3 9 5 7 4 6 1 8 0
C – square
0 7 8 9 1 2 3 4 5 6 6 4 2 8 9 5 1 3 7 0 4 9 5 3 2 7 6 0 1 8 5 1 7 6 4 3 8 9 0 2 3 2 9 0 7 1 5 6 8 4 1 0 3 7 6 8 2 5 4 9 2 8 0 1 3 4 9 7 6 5 9 5 4 2 8 6 0 1 3 7 7 3 6 5 0 9 4 8 2 1 8 6 1 4 5 0 7 2 9 3
——
This is my solution (group MOLS of three LS which incomplete orthogonality)
A – square
9 5 8 3 2 7 0 6 4 1 5 9 6 0 4 3 8 1 7 2 8 6 9 7 1 5 4 0 2 3 3 0 7 9 8 2 6 5 1 4 2 4 1 8 9 0 3 7 6 5 7 3 5 2 0 9 1 4 8 6 0 8 4 6 3 1 9 2 5 7 6 1 0 5 7 4 2 9 3 8 4 7 2 1 6 8 5 3 9 0 1 2 3 4 5 6 7 8 0 9
B – square
5 8 3 2 7 0 6 4 9 1 9 6 0 4 3 8 1 7 5 2 6 9 7 1 5 4 0 2 8 3 0 7 9 8 2 6 5 1 3 4 4 1 8 9 0 3 7 6 2 5 3 5 2 0 9 1 4 8 7 6 8 4 6 3 1 9 2 5 0 7 1 0 5 7 4 2 9 3 6 8 7 2 1 6 8 5 3 9 4 0 2 3 4 5 6 7 8 0 1 9
C – square
3 9 4 7 2 1 6 8 5 0 6 4 9 5 8 3 2 7 0 1 1 7 5 9 6 0 4 3 8 2 0 2 8 6 9 7 1 5 4 3 5 1 3 0 7 9 8 2 6 4 7 6 2 4 1 8 9 0 3 5 4 8 7 3 5 2 0 9 1 6 2 5 0 8 4 6 3 1 9 7 9 3 6 1 0 5 7 4 2 8 8 0 1 2 3 4 5 6 7 9
See
http://mathhelpplanet.com/viewtopic.php?p=258012#p258012- Questo topic è stato modificato 8 anni, 7 mesi fa da Natalia Makarova.
Gennaio 24, 2016 alle 6:30 pm #646Natalia MakarovaPartecipanteDear colleagues!
I invite you to the discussion at the forum in Russia
Gennaio 29, 2016 alle 3:09 pm #648Natalia MakarovaPartecipanteThe group MOLS with partial orthogonality (my solution)
Square A
9 7 1 5 8 6 4 3 2 0 3 9 8 2 6 0 7 5 4 1 5 4 9 0 3 7 1 8 6 2 7 6 5 9 1 4 8 2 0 3 1 8 7 6 9 2 5 0 3 4 4 2 0 8 7 9 3 6 1 5 2 5 3 1 0 8 9 4 7 6 8 3 6 4 2 1 0 9 5 7 6 0 4 7 5 3 2 1 9 8 0 1 2 3 4 5 6 7 8 9
Square B
1 4 2 8 6 9 3 5 7 0 8 2 5 3 0 7 9 4 6 1 7 0 3 6 4 1 8 9 5 2 6 8 1 4 7 5 2 0 9 3 9 7 0 2 5 8 6 3 1 4 2 9 8 1 3 6 0 7 4 5 5 3 9 0 2 4 7 1 8 6 0 6 4 9 1 3 5 8 2 7 3 1 7 5 9 2 4 6 0 8 4 5 6 7 8 0 1 2 3 9
Square C
6 9 4 1 5 8 2 7 3 0 4 7 9 5 2 6 0 3 8 1 0 5 8 9 6 3 7 1 4 2 5 1 6 0 9 7 4 8 2 3 3 6 2 7 1 9 8 5 0 4 1 4 7 3 8 2 9 0 6 5 7 2 5 8 4 0 3 9 1 6 2 8 3 6 0 5 1 4 9 7 9 3 0 4 7 1 6 2 5 8 8 0 1 2 3 4 5 6 7 9
Square D
6 9 5 3 2 7 1 8 4 0 5 7 9 6 4 3 8 2 0 1 1 6 8 9 7 5 4 0 3 2 4 2 7 0 9 8 6 5 1 3 2 5 3 8 1 9 0 7 6 4 7 3 6 4 0 2 9 1 8 5 0 8 4 7 5 1 3 9 2 6 3 1 0 5 8 6 2 4 9 7 9 4 2 1 6 0 7 3 5 8 8 0 1 2 3 4 5 6 7 9
A – B, A – C, A – D orthogonal pairs. B – C, B – D, C – D do not orthogonal pairs.
Are there any known similar groups MOLS?
Gennaio 29, 2016 alle 7:07 pm #649Natalia MakarovaPartecipanteThe group MOLS of five squares with partial orthogonality (my solution)
Square A
9 7 6 4 2 8 5 3 1 0 2 9 8 7 5 3 0 6 4 1 5 3 9 0 8 6 4 1 7 2 8 6 4 9 1 0 7 5 2 3 3 0 7 5 9 2 1 8 6 4 7 4 1 8 6 9 3 2 0 5 1 8 5 2 0 7 9 4 3 6 4 2 0 6 3 1 8 9 5 7 6 5 3 1 7 4 2 0 9 8 0 1 2 3 4 5 6 7 8 9
Square B
8 3 7 1 4 6 9 2 5 0 6 0 4 8 2 5 7 9 3 1 4 7 1 5 0 3 6 8 9 2 9 5 8 2 6 1 4 7 0 3 1 9 6 0 3 7 2 5 8 4 0 2 9 7 1 4 8 3 6 5 7 1 3 9 8 2 5 0 4 6 5 8 2 4 9 0 3 6 1 7 2 6 0 3 5 9 1 4 7 8 3 4 5 6 7 8 0 1 2 9
Square C
4 3 9 8 1 5 7 6 2 0 3 5 4 9 0 2 6 8 7 1 8 4 6 5 9 1 3 7 0 2 1 0 5 7 6 9 2 4 8 3 0 2 1 6 8 7 9 3 5 4 6 1 3 2 7 0 8 9 4 5 5 7 2 4 3 8 1 0 9 6 9 6 8 3 5 4 0 2 1 7 2 9 7 0 4 6 5 1 3 8 7 8 0 1 2 3 4 5 6 9
Square D
4 1 9 6 3 7 2 8 5 0 6 5 2 9 7 4 8 3 0 1 1 7 6 3 9 8 5 0 4 2 5 2 8 7 4 9 0 6 1 3 2 6 3 0 8 5 9 1 7 4 8 3 7 4 1 0 6 9 2 5 3 0 4 8 5 2 1 7 9 6 9 4 1 5 0 6 3 2 8 7 0 9 5 2 6 1 7 4 3 8 7 8 0 1 2 3 4 5 6 9
Square E
6 9 2 5 8 3 7 1 4 0 5 7 9 3 6 0 4 8 2 1 3 6 8 9 4 7 1 5 0 2 1 4 7 0 9 5 8 2 6 3 7 2 5 8 1 9 6 0 3 4 4 8 3 6 0 2 9 7 1 5 2 5 0 4 7 1 3 9 8 6 0 3 6 1 5 8 2 4 9 7 9 1 4 7 2 6 0 3 5 8 8 0 1 2 3 4 5 6 7 9
A – B, A – C, A – D, A – E orthogonal pairs.
B – C, B – D, B – E, C – D, C – E, D – E do not orthogonal pairs.Are there any known similar groups MOLS?
Febbraio 13, 2016 alle 10:22 am #651Natalia MakarovaPartecipanteDear colleagues!
I invite you to take part in the Russian project distributed computing
http://sat.isa.ru/pdsat/index.phpPlease participate in the discussion of problem on the forum
http://forum.boinc.ru/default.aspx?g=posts&t=1872#post79208Febbraio 13, 2016 alle 10:42 am #652Natalia MakarovaPartecipanteWe consider the normalized Diagonal Latin Square
The general formula of the Diagonal Latin Square is of the form:
x1 = 7+2*x90-x83+x79+x80-x73+x70+x68-x63+x60+x57-x53+x50+x46-x43+x40+x35-x33+x30+x24-x23+x20-x8-x9-x6-x7-x4-x5-2*x3 x2 = x3+2-x24-x35-x46-x57-x68-x79-x90+x23+x33+x43+x53+x63+x73+x83 x10 = 36-x20-x30-x40-x50-x60-x70-x80-x90 x11 = -324+2*x89+2*x87+3*x88+2*x86+2*x84+2*x85+2*x82+3*x83+x77+2*x78+x75+x76+2*x73+x74+x69+x67+x68+x65+x66+x63+x64+x62+2*x58+x59+x55+x56+2*x53+x52+2*x48+x49+x47+x44+2*x43+x42+2*x38+x39+x37+x34+x32+2*x33+x29+2*x28+x26+x25+x22+2*x23-x20+2*x8+x6+x7+x4+x5+2*x3 x12 = -x3+42+x24+x35+x46+x57+x68+x79+x90-x23-x33-x43-x53-x63-x73-x83-x22-x32-x42-x52-x62-x72-x82 x13 = -x3+43-x23-x33-x43-x53-x63-x73-x83 x14 = -x4+42-x24-x34-x44-x54-x64-x74-x84 x15 = -x5+41-x25-x35-x45-x55-x65-x75-x85 x16 = -x6+40-x26-x36-x46-x56-x66-x76-x86 x17 = 86-x89-x90-2*x87-2*x88-x86-x84-x85-x82-x83-x77-x78+x72-x67-x68+x63-x58-x57+x54-x48-x47+x45-x38+x36-x37-x28-x8+x9-x7 x18 = -x8+38-x28-x38-x48-x58-x68-x78-x88 x19 = -x9+37-x29-x39-x49-x59-x69-x79-x89 x21 = 92-x89-x90-x87-2*x88-x86-x84-x85-x82-x83-x78+x72-x68+x63-x58+x54-x48+x45-x38+x36-x29-x30-2*x28-x26-x24-x25-x22-x23-x8+x9 x27 = -47+x89+x90+x87+2*x88+x86+x84+x85+x82+x83+x78-x72+x68-x63+x58-x54+x48-x45+x38-x36+x28+x8-x9 x31 = 45-x32-x33-x34-x35-x36-x37-x38-x39-x40 x41 = 45-x42-x43-x44-x45-x46-x47-x48-x49-x50 x51 = 45-x52-x53-x54-x55-x56-x57-x58-x59-x60 x61 = 45-x62-x63-x64-x65-x66-x67-x68-x69-x70 x71 = 45-x72-x73-x74-x75-x76-x77-x78-x79-x80 x81 = 45-x82-x83-x84-x85-x86-x87-x88-x89-x90
We have 70 free variables and 20 dependent variables.
Example
0 1 2 3 4 5 6 7 8 9 9 6 0 1 2 3 7 5 4 8 4 5 9 7 6 2 8 1 3 0 6 9 3 4 5 7 2 8 0 1 5 8 4 0 1 6 9 3 7 2 7 2 5 6 0 8 4 9 1 3 1 7 6 5 8 9 3 0 2 4 3 4 7 8 9 0 1 2 6 5 2 3 8 9 7 1 0 4 5 6 8 0 1 2 3 4 5 6 9 7
- Questa risposta è stata modificata 8 anni, 7 mesi fa da Natalia Makarova.
Marzo 16, 2016 alle 2:38 pm #664Natalia MakarovaPartecipanteGroups pairs of Orthogonal Diagonal Latin Squares (ODLS)
An example of a group of four pairs ODLS we see in the article J. W. Brown and other «Completion of the Spectrum of Orthogonal Diagonal Latin Squares» (1992)
Square A – the main DLS
0 8 5 1 7 3 4 6 9 2 5 1 7 2 9 8 0 3 4 6 1 7 2 9 5 6 8 0 3 4 9 6 4 3 0 2 7 1 5 8 3 0 8 6 4 1 5 9 2 7 4 3 0 8 6 5 9 2 7 1 7 2 9 5 1 4 6 8 0 3 6 4 3 0 8 9 2 7 1 5 2 9 6 4 3 7 1 5 8 0 8 5 1 7 2 0 3 4 6 9
This is followed by squares orthogonal for square A
#1
0 9 4 6 1 7 5 8 2 3 7 1 9 4 5 3 8 0 6 2 4 6 2 8 3 1 7 5 9 0 6 0 7 3 2 8 4 9 1 5 5 3 6 7 4 2 9 1 0 8 8 4 1 2 9 5 0 6 3 7 2 5 3 0 8 9 6 4 7 1 3 2 8 9 0 4 1 7 5 6 9 7 5 1 6 0 3 2 8 4 1 8 0 5 7 6 2 3 4 9
#2
0 4 1 9 8 2 7 3 5 6 3 1 6 8 2 9 4 5 0 7 6 5 2 4 9 0 3 8 7 1 1 8 5 3 7 4 9 0 6 2 9 2 0 5 4 7 8 6 1 3 8 6 3 7 1 5 0 9 2 4 4 0 7 2 5 3 6 1 9 8 2 9 4 1 6 8 5 7 3 0 7 3 9 6 0 1 2 4 8 5 5 7 8 0 3 6 1 2 4 9
And the two squares of this group found Oleg Zaikin:
#3
0 4 7 2 8 9 1 3 5 6 4 1 6 7 0 2 3 5 9 8 6 5 2 8 9 0 7 4 1 3 2 9 5 3 7 4 0 8 6 1 7 6 9 5 4 3 8 1 0 2 8 0 1 6 2 5 4 9 3 7 9 8 3 1 5 7 6 0 2 4 1 2 8 9 3 6 5 7 4 0 3 7 4 0 6 1 9 2 8 5 5 3 0 4 1 8 2 6 7 9
#4
0 9 8 4 6 2 3 5 7 1 4 1 9 7 3 6 2 0 5 8 5 4 2 8 1 3 7 6 9 0 6 0 1 3 7 4 8 9 2 5 8 5 0 2 4 7 9 1 6 3 7 6 3 1 9 5 4 8 0 2 2 3 5 0 8 9 6 4 1 7 1 8 4 9 2 0 5 7 3 6 9 2 7 6 5 1 0 3 8 4 3 7 6 5 0 8 1 2 4 9
See
http://sat.isa.ru/pdsat/additional_solutions.phpInteresting groups pairs ODLS found my colleague Alex Belyshev.
Example 1 – a group of two pairs ODLS.
Square A – the main DLS
0 1 2 3 4 5 6 7 8 9 1 2 3 4 0 6 9 8 5 7 4 0 5 6 9 8 1 3 7 2 6 3 4 8 5 9 7 1 2 0 3 7 0 5 6 4 8 2 9 1 9 4 8 1 2 7 0 6 3 5 2 9 7 0 1 3 4 5 6 8 7 8 1 2 3 0 5 9 4 6 5 6 9 7 8 2 3 0 1 4 8 5 6 9 7 1 2 4 0 3
This is followed by squares orthogonal for square A
#1
0 1 2 3 4 5 6 7 8 9 4 3 8 7 2 0 1 9 6 5 3 6 7 9 5 4 2 1 0 8 2 7 0 6 9 3 8 5 4 1 5 4 9 1 8 2 3 6 7 0 6 9 5 8 0 1 7 4 2 3 1 8 6 4 7 9 5 0 3 2 9 0 3 5 6 8 4 2 1 7 8 5 4 2 1 7 0 3 9 6 7 2 1 0 3 6 9 8 5 4
#2
0 1 2 3 4 5 6 7 8 9 7 8 9 1 2 0 3 4 6 5 6 3 4 8 5 7 9 1 2 0 2 7 5 9 0 6 8 3 4 1 5 6 8 7 3 2 0 9 1 4 8 9 6 2 7 1 4 5 0 3 1 0 3 5 6 4 7 8 9 2 4 5 0 6 8 9 1 2 3 7 9 4 7 0 1 3 2 6 5 8 3 2 1 4 9 8 5 0 7 6
Example 2 – a group of trhee pairs ODLS.
Square A – the main DLS
0 1 2 3 4 5 6 7 8 9 1 2 3 7 0 9 8 5 4 6 4 0 9 6 3 7 1 8 2 5 9 6 8 4 5 1 3 0 7 2 5 9 6 8 7 0 2 4 3 1 3 4 5 9 2 8 0 6 1 7 8 7 0 1 6 3 5 2 9 4 2 3 7 5 9 6 4 1 0 8 7 5 1 2 8 4 9 3 6 0 6 8 4 0 1 2 7 9 5 3
This is followed by squares orthogonal for square A
#1
0 1 2 3 4 5 6 7 8 9 9 3 0 4 8 7 2 1 6 5 1 2 5 8 9 3 7 0 4 6 8 4 9 7 0 6 5 3 2 1 2 0 7 5 6 4 8 9 1 3 4 5 3 6 7 1 9 2 0 8 7 9 6 2 1 8 4 5 3 0 6 7 1 9 2 0 3 8 5 4 5 8 4 0 3 2 1 6 9 7 3 6 8 1 5 9 0 4 7 2
#2
0 1 2 3 4 5 6 7 8 9 9 3 7 4 8 0 2 1 6 5 1 2 5 8 9 3 7 0 4 6 8 4 9 7 0 6 5 3 2 1 2 7 0 5 6 4 8 9 1 3 4 5 3 6 7 1 9 2 0 8 7 9 6 2 1 8 4 5 3 0 6 0 1 9 2 7 3 8 5 4 5 8 4 0 3 2 1 6 9 7 3 6 8 1 5 9 0 4 7 2
#3
0 1 2 3 4 5 6 7 8 9 6 9 5 1 7 8 0 4 3 2 9 2 4 0 1 6 8 5 7 3 3 5 7 6 9 0 2 8 4 1 8 6 3 9 5 1 4 2 0 7 4 8 1 7 6 2 3 9 5 0 1 3 6 4 8 9 7 0 2 5 5 7 8 2 0 4 1 3 9 6 2 0 9 8 3 7 5 6 1 4 7 4 0 5 2 3 9 1 6 8
To be continued…
- Questa risposta è stata modificata 8 anni, 6 mesi fa da Natalia Makarova.
Marzo 16, 2016 alle 3:40 pm #666Natalia MakarovaPartecipanteExample 3 – a group of four pairs ODLS.
Square A – the main DLS
0 1 2 3 4 5 6 7 8 9 1 2 3 4 0 6 9 8 5 7 7 8 5 6 9 0 1 3 4 2 6 9 7 8 1 3 4 5 2 0 3 4 0 5 6 7 8 2 9 1 9 7 8 1 2 4 0 6 3 5 2 3 4 0 5 9 7 1 6 8 4 0 1 2 3 8 5 9 7 6 5 6 9 7 8 2 3 0 1 4 8 5 6 9 7 1 2 4 0 3
This is followed by squares orthogonal for square A
#1
0 1 2 3 4 5 6 7 8 9 4 7 6 9 2 0 1 5 3 8 6 0 8 2 7 9 3 4 5 1 3 4 9 1 8 7 2 0 6 5 8 6 7 4 5 1 9 3 2 0 5 2 4 7 0 3 8 9 1 6 9 5 0 6 1 8 4 2 7 3 1 3 5 8 9 2 7 6 0 4 2 8 3 5 6 4 0 1 9 7 7 9 1 0 3 6 5 8 4 2
#2
0 1 2 3 4 5 6 7 8 9 9 4 8 5 6 0 1 2 7 3 5 0 6 7 3 9 8 4 2 1 8 5 4 1 7 6 3 0 9 2 7 8 3 2 9 1 4 5 6 0 2 6 9 4 0 7 5 3 1 8 3 9 0 8 1 4 2 6 5 7 1 7 5 6 2 3 9 8 0 4 4 2 7 9 5 8 0 1 3 6 6 3 1 0 8 2 7 9 4 5
#3
0 1 2 3 4 5 6 7 8 9 8 5 6 7 9 4 3 2 1 0 2 6 9 0 5 1 7 4 3 8 1 7 3 4 2 8 5 0 9 6 5 0 7 8 3 6 9 1 2 4 6 4 1 5 7 2 8 9 0 3 4 9 8 2 6 0 1 3 7 5 9 3 0 6 1 7 4 8 5 2 7 8 4 9 0 3 2 5 6 1 3 2 5 1 8 9 0 6 4 7
#4
0 1 2 3 4 5 6 7 8 9 9 7 4 6 5 8 3 2 1 0 2 4 6 7 1 9 0 5 3 8 1 6 3 5 2 7 8 9 0 4 6 9 8 0 3 4 7 1 2 5 7 5 0 8 6 2 1 4 9 3 4 8 1 2 7 0 9 3 5 6 5 3 7 9 0 1 4 8 6 2 8 0 5 1 9 3 2 6 4 7 3 2 9 4 8 6 5 0 7 1
Example 4 – a group of six pairs ODLS.
Square A – the main DLS
0 1 2 3 4 5 6 7 8 9 1 2 3 4 0 9 5 6 7 8 3 4 9 1 7 2 8 0 5 6 6 5 0 8 2 7 1 9 4 3 7 6 5 0 1 8 9 4 3 2 9 8 7 6 5 4 3 2 1 0 5 9 1 2 6 3 7 8 0 4 8 7 6 5 9 0 4 3 2 1 2 3 4 9 8 1 0 5 6 7 4 0 8 7 3 6 2 1 9 5
This is followed by squares orthogonal for square A
#1
0 1 2 3 4 5 6 7 8 9 2 3 0 7 6 8 9 1 4 5 7 5 4 9 1 6 0 2 3 8 4 7 8 6 9 0 3 5 2 1 9 0 1 5 8 7 2 3 6 4 3 9 6 2 0 1 4 8 5 7 8 6 7 1 3 2 5 4 9 0 1 2 5 4 7 3 8 9 0 6 5 8 9 0 2 4 1 6 7 3 6 4 3 8 5 9 7 0 1 2
#2
0 1 2 3 4 5 6 7 8 9 6 9 0 7 5 8 2 3 4 1 1 6 4 2 9 7 0 8 3 5 9 4 3 5 1 0 7 6 2 8 5 0 7 4 8 2 1 9 6 3 2 3 6 8 0 1 4 5 9 7 8 7 5 6 2 9 3 4 1 0 7 8 1 9 3 6 5 2 0 4 4 5 8 0 6 3 9 1 7 2 3 2 9 1 7 4 8 0 5 6
#3
0 1 2 3 4 5 6 7 8 9 6 4 0 1 9 7 8 5 2 3 7 2 5 9 6 3 4 8 0 1 8 9 3 6 0 1 7 4 5 2 5 3 6 7 2 0 1 9 4 8 2 7 9 0 1 8 5 6 3 4 4 0 8 5 7 9 3 2 1 6 9 8 4 2 3 6 0 1 7 5 1 6 7 8 5 4 2 3 9 0 3 5 1 4 8 2 9 0 6 7
#4
0 1 2 3 4 5 6 7 8 9 4 5 8 0 1 3 2 9 6 7 1 6 7 9 3 8 0 5 4 2 8 7 4 6 9 0 3 1 2 5 5 3 6 7 2 1 4 8 9 0 2 4 1 5 8 9 7 3 0 6 9 0 5 4 7 6 8 2 3 1 3 9 0 1 6 2 5 4 7 8 6 2 3 8 5 7 9 0 1 4 7 8 9 2 0 4 1 6 5 3
#5
0 1 2 3 4 5 6 7 8 9 6 7 4 1 2 0 8 9 5 3 8 9 1 5 6 3 0 4 7 2 7 4 5 2 8 9 3 6 0 1 1 5 0 8 9 7 2 3 6 4 5 6 3 4 1 8 9 0 2 7 3 8 7 6 0 2 4 1 9 5 4 2 8 9 3 6 7 5 1 0 9 0 6 7 5 4 1 2 3 8 2 3 9 0 7 1 5 8 4 6
#6
0 1 2 3 4 5 6 7 8 9 8 5 6 7 1 4 2 9 0 3 4 6 1 9 2 0 7 5 3 8 1 7 3 2 9 8 4 6 5 0 6 3 0 8 7 1 5 2 9 4 2 0 4 5 8 9 1 3 6 7 9 8 5 6 0 7 3 4 2 1 5 9 7 4 3 6 0 8 1 2 7 2 8 0 6 3 9 1 4 5 3 4 9 1 5 2 8 0 7 6
More examples see here
https://yadi.sk/d/eXghlY-yqC2DhMarzo 17, 2016 alle 12:18 pm #667Natalia MakarovaPartecipanteThe general formula of Brown’s DLS
In the picture you see of Brown’s DLS and its scheme.
The general formula:
x1 = 9- x31 x10 = 9- x25 x11 = - x2- x20+ x25+ x33- x14- x8+ x29+17 x12 = 9- x42 x13 = 9- x43 x15 = 9- x45 x17 = 9- x27 x18 = 9- x28 x19 = 9- x29 x23 = 9- x8 x26 = 9- x16 x3 = 9- x33 x30 = 9- x20 x32 = 9- x2 x4 = 9- x34 x41 = x2+ x20- x25- x33+ x14+ x8- x29-8 x44 = 9- x14 x5 = 9- x35 x6 = 9- x21 x7 = 9- x22 x9 = 9- x24
We have 19 free variables and 21 dependent variables.
Marzo 19, 2016 alle 3:08 pm #668Natalia MakarovaPartecipanteGroups pairs of Orthogonal Diagonal Latin Squares (ODLS)
I found a group of eight pairs ODLS.
Square A – the main DLS
0 1 2 3 4 5 6 7 8 9 1 2 3 4 0 9 5 6 7 8 3 4 9 8 7 2 1 0 5 6 8 7 6 5 9 0 4 3 2 1 7 3 4 0 8 1 9 5 6 2 5 0 8 7 3 6 2 1 9 4 4 9 1 2 6 3 7 8 0 5 2 6 5 9 1 8 0 4 3 7 9 8 7 6 5 4 3 2 1 0 6 5 0 1 2 7 8 9 4 3
This is followed by squares orthogonal for square A
#1
0 1 2 3 4 5 6 7 8 9 6 4 0 1 9 3 2 8 5 7 9 8 7 4 2 6 5 1 3 0 1 0 4 8 5 2 7 6 9 3 3 2 9 5 6 4 1 0 7 8 4 7 5 6 8 1 3 9 0 2 5 6 8 0 3 7 9 2 4 1 7 5 6 2 0 9 8 3 1 4 8 3 1 9 7 0 4 5 2 6 2 9 3 7 1 8 0 4 6 5
#2
0 1 2 3 4 5 6 7 8 9 5 7 0 6 9 1 8 3 4 2 9 3 5 7 2 8 4 1 6 0 4 0 8 1 6 7 2 5 9 3 8 4 9 2 3 6 7 0 1 5 2 6 1 5 8 4 3 9 0 7 1 8 7 0 5 2 9 6 3 4 6 2 3 4 0 9 5 8 7 1 3 5 6 9 7 0 1 4 2 8 7 9 4 8 1 3 0 2 5 6
#3
0 1 2 3 4 5 6 7 8 9 3 4 9 7 1 0 2 8 5 6 6 8 7 0 2 9 5 4 1 3 9 3 4 8 5 2 0 1 6 7 4 2 1 5 3 6 8 9 7 0 7 9 5 6 8 1 3 0 4 2 5 6 8 1 0 7 9 2 3 4 8 5 3 2 9 4 7 6 0 1 1 7 0 9 6 3 4 5 2 8 2 0 6 4 7 8 1 3 9 5
#4
0 1 2 3 4 5 6 7 8 9 8 5 9 6 7 0 3 1 2 4 6 7 1 5 8 9 2 4 0 3 9 3 4 7 2 1 8 0 6 5 1 8 0 2 6 3 4 9 5 7 2 9 3 4 5 8 0 6 7 1 5 6 7 1 0 4 9 2 3 8 4 2 6 8 9 7 5 3 1 0 3 0 5 9 1 2 7 8 4 6 7 4 8 0 3 6 1 5 9 2
#5
0 1 2 3 4 5 6 7 8 9 2 4 1 7 6 0 8 9 5 3 9 6 8 4 3 7 5 2 1 0 6 0 3 2 7 4 1 5 9 8 1 2 9 8 5 3 4 0 7 6 7 9 0 6 8 1 3 4 2 5 8 5 7 0 2 6 9 1 3 4 5 8 6 1 0 9 7 3 4 2 3 7 4 5 9 2 0 8 6 1 4 3 5 9 1 8 2 6 0 7
#6
0 1 2 3 4 5 6 7 8 9 7 5 6 1 8 0 3 9 2 4 9 3 8 5 1 7 2 4 6 0 6 0 4 7 2 3 8 1 9 5 4 8 9 2 3 6 7 0 5 1 2 9 0 6 5 1 4 8 3 7 5 6 3 0 7 4 9 2 1 8 8 2 1 4 0 9 5 6 7 3 1 7 5 8 9 2 0 3 4 6 3 4 7 9 6 8 1 5 0 2
#7
0 1 2 3 4 5 6 7 8 9 3 4 1 7 9 8 2 0 5 6 6 8 5 4 0 7 9 2 1 3 2 3 8 9 7 4 1 5 6 0 9 2 0 1 3 6 4 8 7 5 7 5 9 6 8 1 3 4 0 2 5 6 7 0 2 9 8 1 3 4 8 9 3 2 5 0 7 6 4 1 1 7 4 5 6 3 0 9 2 8 4 0 6 8 1 2 5 3 9 7
#8
0 1 2 3 4 5 6 7 8 9 5 7 8 6 9 2 3 0 4 1 6 9 5 7 0 1 4 8 2 3 4 3 9 1 8 7 2 5 6 0 2 4 0 5 6 3 7 9 1 8 8 2 3 9 1 4 5 6 0 7 1 6 7 0 5 9 8 2 3 4 9 8 6 4 2 0 1 3 7 5 3 5 1 2 7 8 0 4 9 6 7 0 4 8 3 6 9 1 5 2
- Questa risposta è stata modificata 8 anni, 6 mesi fa da Natalia Makarova.
Aprile 17, 2016 alle 4:36 am #671Natalia MakarovaPartecipanteMy colleagues found the group MOLS of three LS which incomplete orthogonality with the orthogonal coefficient 85
Square A from Parker
7 8 2 3 4 5 6 0 1 9 8 2 3 4 0 6 7 1 9 5 2 3 4 0 1 7 8 9 5 6 3 4 0 1 2 8 9 5 6 7 4 0 1 2 3 9 5 6 7 8 5 6 7 8 9 1 2 3 4 0 6 7 8 9 5 2 3 4 0 1 0 1 9 5 6 3 4 7 8 2 1 9 5 6 7 4 0 8 2 3 9 5 6 7 8 0 1 2 3 4
Square B
0 1 2 3 4 5 6 7 8 9 3 0 8 9 6 1 7 2 5 4 4 6 7 1 3 9 5 0 2 8 2 8 5 7 1 0 3 9 4 6 6 9 4 5 0 2 8 3 1 7 1 7 3 4 8 6 9 5 0 2 5 2 9 6 7 8 4 1 3 0 8 5 1 0 9 7 2 4 6 3 9 4 6 2 5 3 0 8 7 1 7 3 0 8 2 4 1 6 9 5
Square C
0 1 2 3 4 5 6 7 8 9 8 0 4 5 9 3 2 6 7 1 9 8 3 6 2 7 4 1 0 5 6 7 1 0 5 9 8 3 2 4 1 2 5 8 7 4 9 0 3 6 2 4 9 7 0 1 3 5 6 8 7 5 0 2 8 6 1 9 4 3 3 9 6 4 1 2 0 8 5 7 4 3 7 9 6 8 5 2 1 0 5 6 8 1 3 0 7 4 9 2
Maggio 8, 2016 alle 2:29 am #679Natalia MakarovaPartecipanteI and my colleagues found the group MOLS of three LS which incomplete orthogonality with the orthogonal coefficient 86.
Square A (DLK)
0 1 2 3 4 5 6 7 8 9 1 2 3 4 0 6 8 9 7 5 7 4 5 6 8 3 9 1 0 2 3 9 0 1 2 7 4 6 5 8 5 6 8 7 9 0 1 3 2 4 9 0 1 8 3 4 5 2 6 7 8 3 4 5 6 2 7 0 9 1 4 5 6 2 7 9 0 8 1 3 6 8 7 9 5 1 2 4 3 0 2 7 9 0 1 8 3 5 4 6
Square B
0 1 2 3 4 5 6 7 8 9 5 9 0 7 6 2 1 3 4 8 6 8 4 1 0 7 5 2 9 3 8 6 5 4 7 3 9 0 1 2 3 7 6 2 8 4 0 9 5 1 4 2 9 5 1 6 7 8 3 0 7 4 3 9 5 0 8 1 2 6 2 0 8 6 9 1 3 4 7 5 9 3 1 0 2 8 4 5 6 7 1 5 7 8 3 9 2 6 0 4
Square C
0 1 2 3 4 5 6 7 8 9 9 3 5 8 7 0 2 1 6 4 3 6 9 7 1 4 8 5 2 0 2 5 1 4 6 8 0 9 3 7 6 2 4 1 0 9 3 8 7 5 7 8 6 0 9 3 1 4 5 2 5 0 7 2 3 1 9 6 4 8 1 7 8 9 5 2 4 3 0 6 4 9 0 6 8 7 5 2 1 3 8 4 3 5 2 6 7 0 9 1
Giugno 21, 2016 alle 8:03 pm #680Natalia MakarovaPartecipanteSystems of four LS of order 10 with partial orthogonality
Example
Square A
9 4 6 1 5 2 8 3 7 0 8 3 7 4 1 6 9 0 5 2 7 0 4 5 6 8 1 2 9 3 6 5 9 7 3 1 2 8 0 4 5 2 8 0 9 7 3 4 1 6 4 9 0 6 7 3 5 1 2 8 3 6 1 2 8 0 7 9 4 5 2 7 3 8 0 9 4 5 6 1 1 8 5 9 2 4 0 6 3 7 0 1 2 3 4 5 6 7 8 9
Square B
0 1 2 3 4 5 6 7 8 9 4 8 7 5 0 9 3 6 2 1 1 0 4 6 5 8 7 2 9 3 7 3 6 2 1 4 9 0 5 8 5 7 3 1 8 0 2 9 6 4 3 2 8 0 9 6 1 5 4 7 9 6 1 8 2 3 5 4 7 0 6 4 5 9 7 1 0 8 3 2 8 5 9 7 3 2 4 1 0 6 2 9 0 4 6 7 8 3 1 5
Square C
0 1 2 3 4 5 6 7 8 9 7 3 6 2 1 4 9 0 5 8 5 7 3 1 8 0 2 9 6 4 3 2 8 0 9 6 1 5 4 7 9 6 1 8 2 3 5 4 7 0 6 4 5 9 7 1 0 8 3 2 8 5 9 7 3 2 4 1 0 6 2 9 0 4 6 7 8 3 1 5 4 8 7 5 0 9 3 6 2 1 1 0 4 6 5 8 7 2 9 3
Square D
0 1 2 3 4 5 6 7 8 9 8 2 5 9 6 7 4 3 0 1 2 8 0 5 3 9 7 4 1 6 4 9 7 6 0 1 8 2 5 3 1 0 3 7 5 4 9 6 2 8 7 3 4 1 9 8 2 0 6 5 5 6 8 2 1 0 3 9 4 7 3 7 1 0 2 6 5 8 9 4 9 4 6 8 7 2 1 5 3 0 6 5 9 4 8 3 0 1 7 2
Orthogonal pairs: A – B, A – C, A – D, partially orthogonal pairs: B – C, B – D, C – D.
B – C
00 11 22 33 44 55 66 77 88 99 47 83 76 52 01 94 39 60 25 18 15 07 43 61 58 80 72 29 96 34 73 32 68 20 19 46 91 05 54 87 59 76 31 18 82 03 25 94 67 40 36 24 85 09 97 61 10 58 43 72 98 65 19 87 23 32 54 41 70 06 62 49 50 94 76 17 08 83 31 25 84 58 97 75 30 29 43 16 02 61 21 90 04 46 65 78 87 32 19 53
00 01 02 03 04 05 06 07 08 09 10 11 15 16 17 18 19 20 21 22 23 24 25 29 30 31 32 33 34 36 39 40 41 43 44 46 47 49 50 52 53 54 55 58 59 60 61 62 65 66 67 68 70 72 73 75 76 77 78 80 82 83 84 85 87 88 90 91 94 96 97 98 99
The number of unique ordered pairs: U = 73B – D
00 11 22 33 44 55 66 77 88 99 48 82 75 59 06 97 34 63 20 11 12 08 40 65 53 89 77 24 91 36 74 39 67 26 10 41 98 02 55 83 51 70 33 17 85 04 29 96 62 48 37 23 84 01 99 68 12 50 46 75 95 66 18 82 21 30 53 49 74 07 63 47 51 90 72 16 05 88 39 24 89 54 96 78 37 22 41 15 03 60 26 95 09 44 68 73 80 31 17 52
00 01 02 03 04 05 06 07 08 09 10 11 12 15 16 17 18 20 21 22 23 24 26 29 30 31 33 34 36 37 39 40 41 44 46 47 48 49 50 51 52 53 54 55 59 60 62 63 65 66 67 68 70 72 73 74 75 77 78 80 82 83 84 85 88 89 90 91 95 96 97 98 99
The number of unique ordered pairs: U = 73C – D
00 11 22 33 44 55 66 77 88 99 78 32 65 29 16 47 94 03 50 81 52 78 30 15 83 09 27 94 61 46 34 29 87 06 90 61 18 52 45 73 91 60 13 87 25 34 59 46 72 08 67 43 54 91 79 18 02 80 36 25 85 56 98 72 31 20 43 19 04 67 23 97 01 40 62 76 85 38 19 54 49 84 76 58 07 92 31 65 23 10 16 05 49 64 58 83 70 21 97 32
00 01 02 03 04 05 06 07 08 09 10 11 13 15 16 18 19 20 21 22 23 25 27 29 30 31 32 33 34 36 38 40 43 44 45 46 47 49 50 52 54 55 56 58 59 60 61 62 64 65 66 67 70 72 73 76 77 78 79 80 81 83 84 85 87 88 90 91 92 94 97 98 99
The number of unique ordered pairs: U = 73The number of unique ordered pairs simultaneously for B – C, B – D, C – D: R=55
00 47 15 73 59 36 98 62 84 21 11 83 07 65 49 90 22 31 85 50 97 04 33 52 20 18 09 46 44 01 23 30 55 80 03 29 78 66 72 91 10 54 08 77 60 05 16 88 67 70 02 99 34 40 06
We call R value – characteristic orthogonality of system with partial orthogonality.
I was unable to find a system of four LS of order 10 with partial orthogonality, for which R> 55.Luglio 17, 2016 alle 5:35 pm #681Natalia MakarovaPartecipanteI found a new unique group of two pairs orthogonal diagonal latin squares of order 10
Square A
0 1 2 3 4 5 6 7 8 9 1 2 3 4 7 0 9 6 5 8 6 0 8 7 1 9 2 4 3 5 4 7 5 9 6 2 0 8 1 3 3 9 4 8 5 6 1 2 7 0 8 5 6 2 3 1 4 9 0 7 5 4 9 1 8 3 7 0 2 6 9 6 7 0 2 8 5 3 4 1 7 8 0 5 9 4 3 1 6 2 2 3 1 6 0 7 8 5 9 4
Square B
0 1 2 3 4 5 6 7 8 9 3 8 7 6 1 9 5 2 4 0 4 2 3 5 8 0 9 1 6 7 2 0 1 7 9 4 3 6 5 8 5 6 0 4 2 8 7 3 9 1 9 3 5 1 0 6 8 4 7 2 6 9 8 2 7 1 4 5 0 3 1 7 6 8 5 2 0 9 3 4 8 5 4 9 3 7 2 0 1 6 7 4 9 0 6 3 1 8 2 5
Square C
0 1 2 3 4 5 6 7 8 9 3 8 7 6 1 9 5 2 4 0 4 2 3 5 8 0 9 1 6 7 8 0 1 7 9 4 3 6 5 2 5 6 0 4 2 8 7 3 9 1 9 3 5 1 0 6 2 4 7 8 6 9 8 2 7 1 4 5 0 3 1 7 6 8 5 2 0 9 3 4 2 5 4 9 3 7 8 0 1 6 7 4 9 0 6 3 1 8 2 5
The group found a random generation of DLS with my program.
Searching orthogonal squares used program S. Belyaev.- Questa risposta è stata modificata 8 anni, 2 mesi fa da Natalia Makarova.
- Questa risposta è stata modificata 8 anni, 2 mesi fa da Natalia Makarova.
- Questa risposta è stata modificata 8 anni, 2 mesi fa da primesmagicgames.
Ottobre 14, 2016 alle 11:34 am #686Natalia MakarovaPartecipanteDear colleagues!
I bring to your attention an article
“Systems of N mutually orthogonal diagonal Latin squares of order 10 with a complete orthogonality (N-1) pairs”
https://yadi.sk/i/S417t0IpwnP6rPlease send feedback to me at [email protected]
-
AutorePost
- Devi essere connesso per rispondere a questo topic.