Home › Forum › Primes Magic Games site › Symmetrical compositions of consecutive twin primes
Taggato: twin primes
- Questo topic ha 3 risposte, 1 partecipante ed è stato aggiornato l'ultima volta 8 anni, 8 mesi fa da Natalia Makarova.
-
AutorePost
-
Dicembre 12, 2015 alle 10:00 pm #625Natalia MakarovaPartecipante
We consider the consecutive twin primes:
(p1, p1+2), (p2, p2+2), … , (pn, pn+2)
where n > 2 and p1 < p2 < … < pn
This composition should be symmetrical.
Required for each n > 2 find the composition with a minimal value of p1.Example:
n = 3
(5, 7), (11, 13), (17, 19)
Symmetry has the following property:
5 + 19 = 7 + 17 = 11 + 13 = 24
You can record a solution briefly:
5: 0, 2, 6, 8, 12, 14
I found the solutions for n = 4, 5, 6.
n = 4 (minimal)
663569: 0, 2, 12, 14, 18, 20, 30, 32
n = 5 (minimal)
3031329797: 0, 2, 12, 14, 42, 44, 72, 74, 84, 86
n = 6 (minimal)
17479880417: 0, 2, 30, 32, 42, 44, 60, 62, 72, 74, 102, 104
Jaroslaw Wroblewski found a solution for n = 8, but it maybe a not minimal solution:
119890755200639999: 0, 2, 42, 44, 78, 80, 90, 92, 120, 122, 132, 134, 168, 170, 210, 212
See puzzle
http://www.primepuzzles.net/puzzles/puzz_813.htmDear colleagues!
You can send your solutions to the website primepuzzles.net- Questo topic è stato modificato 8 anni, 9 mesi fa da Natalia Makarova.
Gennaio 7, 2016 alle 2:50 am #637Natalia MakarovaPartecipanteOf symmetrical composition for n = 8 can sometimes be made pandiagonal square of order 4.
Example
119890755200639999: 0,2,42,44,78,80,90,92,120,122,132,134,168,170,210,212 119 890 755 200 639 999 + 0 170 44 210 134 120 90 80 168 2 212 42 122 132 78 92
I’ll show all similar compositions by J. Wroblewski:
119890755200639999: 0,2,42,44,78,80,90,92,120,122,132,134,168,170,210,212 1025519173619653079: 0,2,42,44,78,80,90,92,120,122,132,134,168,170,210,212 1709642327471063801: 0,2,30,32,60,62,90,92,96,98,126,128,156,158,186,188 1759943151645258947: 0,2,12,14,42,44,54,56,120,122,132,134,162,164,174,176 1960984050584219159: 0,2,30,32,42,44,48,50,72,74,78,80,90,92,120,122 3808061696393625101: 0,2,30,32,60,62,90,92,138,140,168,170,198,200,228,230 4018288550284158077: 0,2,12,14,42,44,54,56,90,92,102,104,132,134,144,146 5512467165717387017: 0,2,30,32,42,44,72,74,132,134,162,164,174,176,204,206 6118066623221589779: 0,2,30,32,42,44,72,74,78,80,108,110,120,122,150,152 6868687010299798889: 0,2,60,62,102,104,162,164,168,170,228,230,270,272,330,332 7214261446565240399: 0,2,48,50,120,122,132,134,168,170,180,182,252,254,300,302
Very interesting solutions!
- Questa risposta è stata modificata 8 anni, 8 mesi fa da Natalia Makarova.
Gennaio 10, 2016 alle 2:07 am #639Natalia MakarovaPartecipanteWe have new solutions.
n = 7 (minimal, author D. Petukhov)
1855418882807417: 0, 2, 12, 14, 30, 32, 72, 74, 114, 116, 132, 134, 144, 146
n = 8 (possibly not minimal? Authors A. Belyshev & N. Makarova)
2640138520272677: 0, 2, 12, 14, 30, 32, 54, 56, 90, 92, 114, 116, 132, 134, 144, 146
See
http://www.primepuzzles.net/puzzles/puzz_813.htm
http://dxdy.ru/post1070606.html#p1070606Dear colleagues!
I ask you to check the minimal solution for n = 8.
Please tell us about your check.Gennaio 13, 2016 alle 3:17 pm #640Natalia MakarovaPartecipanteI found some theoretical patterns for n = 9:
0 2 18 20 30 32 42 44 60 62 78 80 90 92 102 104 120 122 0 2 12 14 30 32 42 44 72 74 102 104 114 116 132 134 144 146 0 2 12 14 30 32 54 56 72 74 90 92 114 116 132 134 144 146 0 2 12 14 42 44 54 56 72 74 90 92 102 104 132 134 144 146 0 2 30 32 42 44 54 56 72 74 90 92 102 104 114 116 144 146 0 2 12 14 42 44 48 50 90 92 132 134 138 140 168 170 180 182
This approximation to the solution for n = 9, wherein only two elements are not prime numbers:
2640138520272677: 0, 2, 12, 14, 30, 32, 54, 56, 72*, 74*, 90, 92, 114, 116, 132, 134, 144, 146
-
AutorePost
- Devi essere connesso per rispondere a questo topic.