Symmetrical compositions of consecutive twin primes

Home Forum Primes Magic Games site Symmetrical compositions of consecutive twin primes

Taggato: 

Stai visualizzando 4 post - dal 1 a 4 (di 4 totali)
  • Autore
    Post
  • #625
    Natalia Makarova
    Partecipante

    We consider the consecutive twin primes:

    (p1, p1+2), (p2, p2+2), … , (pn, pn+2)

    where n > 2 and p1 < p2 < … < pn

    This composition should be symmetrical.
    Required for each n > 2 find the composition with a minimal value of p1.

    Example:

    n = 3
    (5, 7), (11, 13), (17, 19)

    Symmetry has the following property:

    5 + 19 = 7 + 17 = 11 + 13 = 24

    You can record a solution briefly:

    5: 0, 2, 6, 8, 12, 14

    I found the solutions for n = 4, 5, 6.

    n = 4 (minimal)
    663569: 0, 2, 12, 14, 18, 20, 30, 32

    n = 5 (minimal)
    3031329797: 0, 2, 12, 14, 42, 44, 72, 74, 84, 86

    n = 6 (minimal)
    17479880417: 0, 2, 30, 32, 42, 44, 60, 62, 72, 74, 102, 104

    Jaroslaw Wroblewski found a solution for n = 8, but it maybe a not minimal solution:

    119890755200639999: 0, 2, 42, 44, 78, 80, 90, 92, 120, 122, 132, 134, 168, 170, 210, 212

    See puzzle
    http://www.primepuzzles.net/puzzles/puzz_813.htm

    Dear colleagues!
    You can send your solutions to the website primepuzzles.net

    #637
    Natalia Makarova
    Partecipante

    Of symmetrical composition for n = 8 can sometimes be made pandiagonal square of order 4.

    Example

    119890755200639999: 0,2,42,44,78,80,90,92,120,122,132,134,168,170,210,212
    
    119 890 755 200 639 999 +
    0 170 44 210
    134 120 90 80
    168 2 212 42
    122 132 78 92

    I’ll show all similar compositions by J. Wroblewski:

    119890755200639999: 0,2,42,44,78,80,90,92,120,122,132,134,168,170,210,212
    1025519173619653079: 0,2,42,44,78,80,90,92,120,122,132,134,168,170,210,212
    1709642327471063801: 0,2,30,32,60,62,90,92,96,98,126,128,156,158,186,188
    1759943151645258947: 0,2,12,14,42,44,54,56,120,122,132,134,162,164,174,176
    1960984050584219159: 0,2,30,32,42,44,48,50,72,74,78,80,90,92,120,122
    3808061696393625101: 0,2,30,32,60,62,90,92,138,140,168,170,198,200,228,230
    4018288550284158077: 0,2,12,14,42,44,54,56,90,92,102,104,132,134,144,146
    5512467165717387017: 0,2,30,32,42,44,72,74,132,134,162,164,174,176,204,206
    6118066623221589779: 0,2,30,32,42,44,72,74,78,80,108,110,120,122,150,152
    6868687010299798889:
    0,2,60,62,102,104,162,164,168,170,228,230,270,272,330,332
    7214261446565240399: 0,2,48,50,120,122,132,134,168,170,180,182,252,254,300,302

    Very interesting solutions!

    #639
    Natalia Makarova
    Partecipante

    We have new solutions.

    n = 7 (minimal, author D. Petukhov)

    1855418882807417: 0, 2, 12, 14, 30, 32, 72, 74, 114, 116, 132, 134, 144, 146

    n = 8 (possibly not minimal? Authors A. Belyshev & N. Makarova)

    2640138520272677: 0, 2, 12, 14, 30, 32, 54, 56, 90, 92, 114, 116, 132, 134, 144, 146

    See
    http://www.primepuzzles.net/puzzles/puzz_813.htm
    http://dxdy.ru/post1070606.html#p1070606

    Dear colleagues!
    I ask you to check the minimal solution for n = 8.
    Please tell us about your check.

    #640
    Natalia Makarova
    Partecipante

    I found some theoretical patterns for n = 9:

    0  2  18  20  30  32  42  44  60  62  78  80  90  92  102  104  120  122
    0  2  12  14  30  32  42  44  72  74  102  104  114  116  132  134  144  146 
    0  2  12  14  30  32  54  56  72  74  90  92  114  116  132  134  144  146 
    0  2  12  14  42  44  54  56  72  74  90  92  102  104  132  134  144  146 
    0  2  30  32  42  44  54  56  72  74  90  92  102  104  114  116  144  146
    0  2  12  14  42  44  48  50  90  92  132  134  138  140  168  170  180  182

    This approximation to the solution for n = 9, wherein only two elements are not prime numbers:

    2640138520272677: 0, 2, 12, 14, 30, 32, 54, 56, 72*, 74*, 90, 92, 114, 116, 132, 134, 144, 146

Stai visualizzando 4 post - dal 1 a 4 (di 4 totali)
  • Devi essere connesso per rispondere a questo topic.