Home › Forum › Primes Magic Games site › Symmetrical compositions of twin primes
Taggato: magic square
- Questo topic ha 6 risposte, 1 partecipante ed è stato aggiornato l'ultima volta 8 anni, 10 mesi fa da Natalia Makarova.
-
AutorePost
-
Ottobre 22, 2015 alle 5:16 am #586Natalia MakarovaPartecipante
We consider the twin primes
(p1, p1+2), … (p2, p2+2), …, (p3, p3+2), … , (pn, pn+2)
where n > 2 and p1 < p2 < p3 < … < pnBetween the twin primes may be other primes for which we do not pay attention.
Then formed composition (p1, p2, p3, …, pn), which should be symmetrical.
Required for each n > 2 find the composition with a minimal value of p1.Examples:
n=3
(5, 7), (11, 13), (17, 19)
Symmetrical composition:
[5, 11, 17] 5+17=2*11
n=4
(29, 31), (41, 43), (59, 61), (71, 73)
Symmetrical composition:
[29, 41, 59, 71] 29+71=41+59
I found the following solutions:
n=5 [155861, 155891, 156059, 156227, 156257] n=6 [59, 71, 101, 107, 137, 149] n=7 [227927459, 227927597, 227927639, 227927699, 227927759, 227927801, 227927939] n=8 [41387, 41411, 41519, 41609, 41759, 41849, 41957, 41981] n=9 [54793185527, 54793185659, 54793185989, 54793186169, 54793186559, 54793186949, 54793187129, 54793187459, 54793187591] n=10 [34623805211, 34623805421, 34623805787, 34623806249, 34623806771, 34623807017, 34623807539, 34623808001, 34623808367, 34623808577]
You can record solutions briefly in the following form:
n=10
34623805211: 0, 210, 576, 1038, 1560, 1806, 2328, 2790, 3156, 3366
Solutions for n = 9 are required to solve the puzzle
http://www.primepuzzles.net/puzzles/puzz_769.htm
for n=3.I have another solutions for n = 9:
354584248349: 0, 132, 372, 678, 900, 1122, 1428, 1668, 1800 388743941039: 0, 42, 240, 282, 450, 618, 660, 858, 900 403147629431: 0, 126, 420, 750, 768, 786, 1116, 1410, 1536 463060598321: 0, 390, 906, 1116, 1218, 1320, 1530, 2046, 2436 584591273177: 0, 372, 744, 1122, 1152, 1182, 1560, 1932, 2304
But I have not got a magic square of order 3.
Dear Colleagues!
Please take part in solving the problem.
Required:
1. Find the minimal solutions for n > 10
2. Find more solutions for n = 9.Ottobre 22, 2015 alle 6:52 am #587Natalia MakarovaPartecipanteShould you find many solutions of the problem for n = 8, you can make pandiagonal squares of order 4.
For example, symmetrical composition71580585467: 0, 180, 420, 600, 1194, 1374, 1614, 1794
transform into the next symmetrical composition:
71580585467: 0, 2, 180, 182, 420, 422, 600, 602, 1194, 1196, 1374, 1376, 1614, 1616, 1794, 1796
This symmetrical composition gives the following pandiagonal square of order 4:
71580585467 +
0 1794 422 1376 602 1196 180 1614 1374 420 1796 2 1616 182 1194 600
Ottobre 26, 2015 alle 1:33 am #589Natalia MakarovaPartecipanteI found another solution for n = 9
1110317288231: 0, 450, 648, 756, 1038, 1320, 1428, 1626, 2076
But the magic square of order 3 of these numbers will not be.
I continue to search.
Novembre 6, 2015 alle 3:48 am #590Natalia MakarovaPartecipanteThe problem is published here
http://www.primepuzzles.net/puzzles/puzz_807.htmYou can send your solutions to this site.
I found another solution for n = 9
2007253835681: 0, 6, 420, 1896, 1938, 1980, 3456, 3870, 3876
But the magic square of order 3 is not received.
Novembre 7, 2015 alle 6:38 am #591Natalia MakarovaPartecipanteI found another solution for n = 9
2188700058659: 0, 792, 1038, 1428, 1590, 1752, 2142, 2388, 3180
But the magic square of order 3 is not received.
Novembre 10, 2015 alle 12:18 pm #592Natalia MakarovaPartecipanteJaroslaw Wroblewski (Jarek) said at a forum in Russia:
«I have found the following solutions to the problem of 3×3 magic square of consecutive twins:
204860134660098317297: 0, 42, 60, 84, 102, 120, 144, 162, 204
422229725797687239077: 0, 42, 84, 120, 162, 204, 240, 282, 324
5646440666838544810187: 0, 42, 84, 210, 252, 294, 420, 462, 504
6082062789438398013049: 0, 12, 24, 240, 252, 264, 480, 492, 504Diameter 204 is the smallest possible, while my approach cannot find minimal solution (with respect to size of primes).»
See
http://dxdy.ru/post1071800.html#p1071800Very interesting solutions! However, the problem remains minimal solution.
- Questa risposta è stata modificata 8 anni, 10 mesi fa da Natalia Makarova.
Novembre 11, 2015 alle 2:54 am #594Natalia MakarovaPartecipanteRefinement
6082062789438398013047: 0, 12, 24, 240, 252, 264, 480, 492, 504
-
AutorePost
- Devi essere connesso per rispondere a questo topic.