Symmetrical compositions of twin primes

Home Forum Primes Magic Games site Symmetrical compositions of twin primes

Taggato: 

Stai visualizzando 7 post - dal 1 a 7 (di 7 totali)
  • Autore
    Post
  • #586
    Natalia Makarova
    Partecipante

    We consider the twin primes

    (p1, p1+2), … (p2, p2+2), …, (p3, p3+2), … , (pn, pn+2)
    where n > 2 and p1 < p2 < p3 < … < pn

    Between the twin primes may be other primes for which we do not pay attention.
    Then formed composition (p1, p2, p3, …, pn), which should be symmetrical.
    Required for each n > 2 find the composition with a minimal value of p1.

    Examples:

    n=3
    (5, 7), (11, 13), (17, 19)

    Symmetrical composition:

    [5, 11, 17]
    5+17=2*11

    n=4
    (29, 31), (41, 43), (59, 61), (71, 73)

    Symmetrical composition:

    [29, 41, 59, 71]
    29+71=41+59

    I found the following solutions:

    n=5
    [155861, 155891, 156059, 156227, 156257]
    n=6
    [59, 71, 101, 107, 137, 149]
    n=7
    [227927459, 227927597, 227927639, 227927699, 227927759, 227927801, 227927939]
    n=8
    [41387, 41411, 41519, 41609, 41759, 41849, 41957, 41981]
    n=9
    [54793185527, 54793185659, 54793185989, 54793186169, 54793186559, 54793186949, 54793187129, 54793187459, 54793187591]
    n=10
    [34623805211, 34623805421, 34623805787, 34623806249, 34623806771, 34623807017, 34623807539, 34623808001, 34623808367, 34623808577]

    You can record solutions briefly in the following form:
    n=10
    34623805211: 0, 210, 576, 1038, 1560, 1806, 2328, 2790, 3156, 3366

    Solutions for n = 9 are required to solve the puzzle
    http://www.primepuzzles.net/puzzles/puzz_769.htm
    for n=3.

    I have another solutions for n = 9:

    354584248349: 0, 132, 372, 678, 900, 1122, 1428, 1668, 1800
    388743941039: 0, 42, 240, 282, 450, 618, 660, 858, 900
    403147629431: 0, 126, 420, 750, 768, 786, 1116, 1410, 1536
    463060598321: 0, 390, 906, 1116, 1218, 1320, 1530, 2046, 2436
    584591273177: 0, 372, 744, 1122, 1152, 1182, 1560, 1932, 2304

    But I have not got a magic square of order 3.

    Dear Colleagues!
    Please take part in solving the problem.
    Required:
    1. Find the minimal solutions for n > 10
    2. Find more solutions for n = 9.

    #587
    Natalia Makarova
    Partecipante

    Should you find many solutions of the problem for n = 8, you can make pandiagonal squares of order 4.
    For example, symmetrical composition

    71580585467: 0, 180, 420, 600, 1194, 1374, 1614, 1794

    transform into the next symmetrical composition:

    71580585467: 0, 2, 180, 182, 420, 422, 600, 602, 1194, 1196, 1374, 1376, 1614, 1616, 1794, 1796

    This symmetrical composition gives the following pandiagonal square of order 4:

    71580585467 +

       0 1794  422 1376
     602 1196  180 1614
    1374  420 1796    2
    1616  182 1194  600
    #589
    Natalia Makarova
    Partecipante

    I found another solution for n = 9

    1110317288231: 0, 450, 648, 756, 1038, 1320, 1428, 1626, 2076

    But the magic square of order 3 of these numbers will not be.

    I continue to search.

    #590
    Natalia Makarova
    Partecipante

    The problem is published here
    http://www.primepuzzles.net/puzzles/puzz_807.htm

    You can send your solutions to this site.

    I found another solution for n = 9
    2007253835681: 0, 6, 420, 1896, 1938, 1980, 3456, 3870, 3876

    But the magic square of order 3 is not received.

    #591
    Natalia Makarova
    Partecipante

    I found another solution for n = 9
    2188700058659: 0, 792, 1038, 1428, 1590, 1752, 2142, 2388, 3180

    But the magic square of order 3 is not received.

    #592
    Natalia Makarova
    Partecipante

    Jaroslaw Wroblewski (Jarek) said at a forum in Russia:

    «I have found the following solutions to the problem of 3×3 magic square of consecutive twins:

    204860134660098317297: 0, 42, 60, 84, 102, 120, 144, 162, 204
    422229725797687239077: 0, 42, 84, 120, 162, 204, 240, 282, 324
    5646440666838544810187: 0, 42, 84, 210, 252, 294, 420, 462, 504
    6082062789438398013049: 0, 12, 24, 240, 252, 264, 480, 492, 504

    Diameter 204 is the smallest possible, while my approach cannot find minimal solution (with respect to size of primes).»

    See
    http://dxdy.ru/post1071800.html#p1071800

    Very interesting solutions! However, the problem remains minimal solution.

    #594
    Natalia Makarova
    Partecipante

    Refinement
    6082062789438398013047: 0, 12, 24, 240, 252, 264, 480, 492, 504

Stai visualizzando 7 post - dal 1 a 7 (di 7 totali)
  • Devi essere connesso per rispondere a questo topic.