Competition #4
This competition is organized by Макарова Наталия (Natalia Makarova)
Definitions
Definition 1:
A prime k-tuple is a finite collection of values (p + a1, p + a2, p + a3, …, p + ak), where p, p + a1, p + a2, p + a3, …, p + ak are prime numbers, (a1, a2, a3, …, ak) are pattern. Typically the first value in the pattern is 0 and the rest are distinct positive even numbers.
We consider the k-tuple, where p + a1, p + a2, p + a3, …, p + ak are consecutive primes.
Definition 2:
k-tuple (p + a1, p + a2, p + a3, …, p + a [k / 2], p + a [k / 2+1], …, p + a [k-2], p + a [k-1], p + ak) for k even, is called symmetric, if the following condition is satisfied:
a1 + ak = a2 + a[k-1] = a3 + a[k-2] = … = a[k/2] + a[k/2+1]
Example: symmetric 8-tuple
(17 + 0, 17 + 2, 17 + 6, 17 + 12, 17 + 14, 17 + 20, 17 + 24, 17 + 26)
Shortened we write this:
17: 0, 2, 6, 12, 14, 20, 24, 26
Definition 3:
k-tuple (p + a1, p + a2, p + a3, …, p + a [(k-1) / 2], p + a [(k-1) / 2 + 1], p + a [(k-1) / 2 + 2], …, p + a [k-2], p + a [k-1], p + ak) for k odd called symmetric, if the following condition is satisfied:
a1 + ak = a2 + a[k-1] = a3 +a [k-2] =…= a[(k-1)/2] + a[(k-1)/2+2] = 2 a[(k-1)/2+1]
Example: symmetric 5-tuple
18713: 0, 6, 18, 30, 36
Definition 4:
The diameter d of k-tuple is the difference of its largest and smallest elements.
Example: 8-tuple
17: 0, 2, 6, 12, 14, 20, 24, 26
It has a diameter d = 26.
Definition 5:
A pandiagonal magic square is a magic square with the additional property that the broken diagonals, i.e. the diagonals that wrap round at the edges of the square, also add up to the magic constant.
The Contest
In the contest is required to compete for those tasks:
Task 1
Required to find k-tuples with the minimal value p:
for an even k > 24; for odd k > 15.
Example
15-tuple, p=3945769040698829 (minimal) 3945769040698829: 0, 12, 18, 42, 102, 138, 180, 210, 240, 282, 318, 378, 402, 408, 420
Task 2
Required to find k-tuples with a minimal diameter d:
for an even k > 10; for odd k > 13.
Example
8-tuple with a minimal diameter d = 26
17: 0, 2, 6, 12, 14, 20, 24, 26
Task 3
Required to find the 16-tuple, the elements of which it is possible to make pandiagonal magic square of order 4 with magic constant S as: 94615738903617540 < S < 29643562211780078520
Example 16-tuple
23653934725904299: 0, 12, 22, 34, 48, 60, 70, 82, 90, 102, 112, 124, 138, 150, 160, 172
pandiagonal magic square
23653934725904299+ 0 160 60 124 82 102 22 138 112 48 172 12 150 34 90 70 S=94615738903617540
Rule:
Prime numbers can contain no more than 100 digits.
In tasks 1 and 2 k <= 50.
Format of solution
For every task the first line is the number of task you are entering: so 1, 2 or 3. After there are those lines according to the tasks you are inserting.
In tasks 1 and 2
k-tuple is represented as
p: a1, a2, a3, …, ak
Example
18713: 0, 6, 18, 30, 36
In task 3
it is 16-tuple and pandiagonal magic square of order 4, composed of the elements of the tuple.
Example
23653934725904299: 0, 12, 22, 34, 48, 60, 70, 82, 90, 102, 112, 124, 138, 150, 160, 172 0, 160, 60, 124, 82, 102, 22, 138, 112, 48, 172, 12, 150, 34, 90, 70
Scoring
The contestant receives one point for every solution to tasks 1 and 3.
For each k in task 2 one point counted towards only those participants, who will have a minimum diameter d.
The Prize
If two or more contestants have equal number of points, the winner will be the entrant who submitted solutions ahead of other contestants.
The winner will receive a prize of 5,000 rubles.
If the winner is not from Russia, the prize will be paid in US dollars at the official exchange rate on the day ending of the contest.
Thanks
We thanks Wolfram Alpha as we use their API for testing the primality of the given big numbers.
Links
[1] https://en.wikipedia.org/wiki/Prime_k-tuple
[2] https://en.wikipedia.org/wiki/Pandiagonal_magic_square
[3] http://oeis.org/A256234
[4] http://oeis.org/A081235
[5] http://oeis.org/A055380
[6] http://oeis.org/A055382
[7] http://oeis.org/A175309
[8] http://www.primepuzzles.net/problems/prob_060.htm
[9] http://dxdy.ru/topic93581.html
[10] http://dxdy.ru/topic87170.html